परिमेय संख्याओं $\frac{5}{7}$ और $\frac{9}{11}$ के बीच की तीन अलग-अलग अपरिमेय संख्याएँ ज्ञात कीजिए।
$\frac{1}{7}$ और $\frac{2}{7}$ के बीच की एक अपरिमेय संख्या ज्ञात कीजिए।
$\frac{5}{\sqrt{3}-\sqrt{5}}$ के हर का परिमेयकरण कीजिए।
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
$(i)$ प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है।
$(ii)$ संख्या रेखा का प्रत्येक बिन्दु $\sqrt{m}$ के रूप का होता है, जहाँ $m$ एक प्राकृत संख्या है।
$(iii)$ प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।
क्या शून्य एक परिमेय संख्या है ? क्या इसे आप $\frac{p}{q}$ के रूप में लिख सकते हैं, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है ?