Rationalise the denominator of $\frac{1}{\sqrt{2}}$.
Look at several examples of rational numbers in the form $\frac{p}{q}(q \neq 0),$ where $p$ and $q$ are integers with no common factors other than $1$ and having terminating decimal representations (expansions). Can you guess what property $q$ must satisfy ?
Visualise $3.765$ on the number line, using successive magnification.
Simplify
$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}$
$(ii)$ $\left(3^{\frac{1}{5}}\right)^{4}$
$(iii)$ $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$
$(iv)$ $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$
State whether the following statements are true or false. Give reasons for your answers.
$(i)$ Every natural number is a whole number.
$(ii)$ Every integer is a whole number.
$(iii)$ Every rational number is a whole number