જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{n}{n+1}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{n}=\frac{n}{n+1}$

Substituting $n=1,2,3,4,5,$ we obtain

${a_1} = \frac{1}{{1 + 1}} = \frac{1}{2},$

${a_2} = \frac{2}{{2 + 1}} = \frac{2}{3},$

${a_3} = \frac{3}{{3 + 1}} = \frac{3}{4},$

${a_4} = \frac{4}{{4 + 1}} = \frac{4}{5},$

${a_5} = \frac{5}{{5 + 1}} = \frac{5}{6}$

Therefore, the required terms are $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$ and $\frac{5}{6}$

Similar Questions

$n$ બાજુઓ વાળા એક બહુકોણના અંતઃખૂણાઓ સામાન્ય તફાવત $6^{\circ}$ વાળી એક સમાંતર શ્રેણીમાં છે. જે બહુકોણમાં મોટામાં મોટો અંતઃખૂણો $219^{\circ}$ હોય, તો $n =$ ________.

  • [JEE MAIN 2025]

એક ખેડૂત પુન:વેચાણનું ટ્રેક્ટર $Rs$ $12,000 $ માં ખરીદે છે. તે $Rs$ $ 6000$ રોકડા ચૂકવે છે અને બાકીની રકમ $Rs$ $500$ ના વાર્ષિક હપતામાં અને $12 \%$ વ્યાજે ચૂકવે છે, તો તેણે ટ્રેક્ટરની શું કિંમત ચૂકવી હશે? 

સાબિત કરો કે સમાંતર શ્રેણીમાં $(m + n)$ માં તથા $(m - n)$ માં પદોનો સરવાળો $m$ માં પદ કરતાં બમણો થાય છે. 

કાટકોણ ત્રિકોણની બાજુઓનાં માપ સમાંતર શ્રેણીમાં હોય, તો તેઓ......... ના પ્રમાણમાં છે.

$100$ અને $1000$ વચ્ચેની $5$ ની ગુણિત પ્રાકૃતિક સંખ્યાઓનો સરવાળો શોધો.