એક ખેડૂત પુન:વેચાણનું ટ્રેક્ટર $Rs$ $12,000 $ માં ખરીદે છે. તે $Rs$ $ 6000$ રોકડા ચૂકવે છે અને બાકીની રકમ $Rs$ $500$ ના વાર્ષિક હપતામાં અને $12 \%$ વ્યાજે ચૂકવે છે, તો તેણે ટ્રેક્ટરની શું કિંમત ચૂકવી હશે?
It is given farmer pays $Rs.$ $6000$ in cash.
Therefore, unpaid amount $=$ $Rs.$ $12000-$ $Rs.$ $6000=$ $Rs.$ $6000$
According to the given condition, the interest paid annually is
$12 \%$ of $6000,12 \%$ of $5500,12 \%$ of $5000 \ldots \ldots 12 \%$ of $500$
Thus, total interest to be paid
$=12 \%$ of $6000+12 \%$ of $5500+12 \%$ of $5000+\ldots \ldots+12 \%$ of $500$
$=12 \%$ of $(6000+5500+5000+\ldots .+500)$
$=12 \%$ of $(500+1000+1500+\ldots \ldots+6000)$
Now, the series $500,1000,1500 \ldots 6000$ is an $A.P.$ with both the first term and common difference equal to $500 .$
Let the number of terms of the $A.P.$ be $n$
$\therefore 6000=500+(n-1) 500$
$\Rightarrow 1+(n-1)=12$
$\Rightarrow n=12$
$\therefore$ Sum of the $A.P.$
$=\frac{12}{2}[2(500)+(12-1)(500)]=6[1000+5500]=6(6500)=39000$
Thus, total interest to be paid
$=12 \%$ of $(500+1000+1500+\ldots . .+6000)$
$=12 \%$ of $39000= Rs .4680$
Thus, cost of tractor $=( Rs .12000+ Rs .4680)= Rs .16680$
વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો ગુણાકાર કેટલો થાય ?
સમાંતર શ્રેણીના પ્રથમ ત્રણ પદોનો સરવાળો $39$ અને તેના છેલ્લા ચાર પદોનો સરવાળો $178$ છે. જો પ્રથમ પદ $10$ હોય તો સમાંતર શ્રેણીનો મધ્યસ્થ મેળવો.
ધારોકે $a, b, c$ સમાંતર શ્રેણીમાં છે. ધારો કે $(a, c), (2, b)$ અને $(a, b)$ શિરોબિંદુવાળા ત્રિકોણનું મધ્યકેન્દ્ર $\left(\frac{10}{3}, \frac{7}{3}\right)$ છે. જો સમીકરણ $ax ^{2}+ bx +1=0$ નાં બીજ $\alpha, \beta$ હોય, તો $\alpha^{2}+\beta^{2}-\alpha \beta$ નું મૂલ્ય ....... છે.
એક માણસ વાર્ષિક $5\%$ ના સાદા વ્યાજે બેંકમાં $Rs.$ $10,000$ જમા કરાવે છે, તો તેણે જમા કરાવેલ રકમથી $15$ માં વર્ષમાં જમા રકમ અને $20$ વર્ષ પછીની કુલ રકમ શોધો.
સમાંતર શ્રેણીનાં પ્રથમ ચાર પદોનો સરવાળો $56$ છે. તેનાં છેલ્લાં ચાર પદોનો સરવાળો $112$ છે. તેનું પ્રથમ પદ $11$ છે, તો પદોની સંખ્યા શોધો.