$n$ બાજુઓ વાળા એક બહુકોણના અંતઃખૂણાઓ સામાન્ય તફાવત $6^{\circ}$ વાળી એક સમાંતર શ્રેણીમાં છે. જે બહુકોણમાં મોટામાં મોટો અંતઃખૂણો $219^{\circ}$ હોય, તો $n =$ ________.

  • [JEE MAIN 2025]
  • A
    $10$
  • B
    $30$
  • C
    $20$
  • D
    $50$

Similar Questions

અહી $a_1, a_2, a_3 \ldots$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\sum_{ k =1}^{12} a _{2 k -1}=-\frac{72}{5} a _1, a _1 \neq 0$. જો $\sum_{ k =1}^{ n } a _{ k }=0$ હોય તો $n$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]

જો શ્રેણી $\sqrt 3  + \sqrt {75}  + \sqrt {243}  + \sqrt {507}  + ......$ ના $n$ પદોનો સરવાળો $435\sqrt 3 $ થાય તો $n$ ની કિમત મેળવો.

  • [JEE MAIN 2017]

જો ${\log _3}2,\;{\log _3}({2^x} - 5)$ અને ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ સંમાતર શ્રેણીમાં હોય તો  $x$= _________. 

  • [IIT 1990]

ત્રણ સંખ્યાઓ સમગુણોત્તર શ્રેણીમાં છે, તો તેના લઘુગુણક.......

ધારો કે  $\mathrm{S}_{\mathrm{n}}$ સમાંતર શ્રેણીનાં પહેલા $\mathrm{n}$ પદોનો સરવાળો દર્શાવે  છે. જો  $\mathrm{S}_{20}=790$ અને $\mathrm{S}_{10}=145$ હોય, તો  $\mathrm{S}_{15}-\mathrm{S}_5=$....................

  • [JEE MAIN 2024]