$(1-x)^{100}$ के द्विपद प्रसार में प्रथम $50$ पदों के गुणांकों का योग बराबर है :

  • [JEE MAIN 2023]
  • A

    $-{ }^{101} C _{50}$

  • B

    ${ }^{99} C _{49}$

  • C

    $-{ }^{99} C _{49}$

  • D

    ${ }^{101} C _{50}$

Similar Questions

$(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots . .+x^{500}$ में $\mathrm{x}^{301}$ का गुणांक है :

  • [JEE MAIN 2023]

माना $m, n \in N$ तथा $\operatorname{gcd}(2, n)=1$ हैं। यदि $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ हैं तो $n + m$ बराबर है I (यहाँ) $\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }$ है।

  • [JEE MAIN 2021]

माना $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40}$ है। तो $a_{1}+a_{3}+a_{5}+\ldots+a_{37}$ बराबर है 

  • [JEE MAIN 2021]

${(1 + x)^{50}}$ के विस्तार में $x$ की विषम घातों के पदों के गुणांकों का योग होगा

माना $n$ और $k$ धनात्मक पूर्णांक इस प्रकार हैं कि $n \ge \frac{{k(k + 1)}}{2}$. ${x_1} + {x_2} + .... + {x_k} = n$ को सन्तुष्ट करने वाले हलों $({x_1},{x_2},....{x_k})$, जहाँ ${x_1} \ge 1,{x_2} \ge 2,....{x_k} \ge k,$ तथा सभी पूर्णांक हैं, की संख्या है

  • [IIT 1996]