The sum, of the coefficients of the first $50$ terms in the binomial expansion of $(1-x)^{100}$, is equal to
$-{ }^{101} C _{50}$
${ }^{99} C _{49}$
$-{ }^{99} C _{49}$
${ }^{101} C _{50}$
$\frac{{{C_0}}}{1} + \frac{{{C_1}}}{2} + \frac{{{C_2}}}{3} + .... + \frac{{{C_n}}}{{n + 1}} = $
The value $\sum \limits_{ r =0}^{22}{ }^{22} C _{ r }{ }^{23} C _{ r }$ is $.......$
Coefficient of $x^{64}$ in the expansion of $(x - 1)^2(x - 2)^3(x - 3)^4(x - 4)^5 .... (x - 10)^{11}$
If the number of terms in the expansion of ${\left( {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} \right)^n},x \ne 0$ is $28$ then the sum of the coefficients of all the terms in this expansion, is :
Let the coefficient of $x^{\mathrm{r}}$ in the expansion of $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+$ $(\mathrm{x}+3)^{\mathrm{n}-3}(\mathrm{x}+2)^2+\ldots \ldots+(\mathrm{x}+2)^{\mathrm{n}-1}$ be $\alpha_{\mathrm{r}}$. If $\sum_{\mathrm{r}=0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$, then the value of $\beta^2+\gamma^2$ equals..................