माना $n$ और $k$ धनात्मक पूर्णांक इस प्रकार हैं कि $n \ge \frac{{k(k + 1)}}{2}$. ${x_1} + {x_2} + .... + {x_k} = n$ को सन्तुष्ट करने वाले हलों $({x_1},{x_2},....{x_k})$, जहाँ ${x_1} \ge 1,{x_2} \ge 2,....{x_k} \ge k,$ तथा सभी पूर्णांक हैं, की संख्या है

  • [IIT 1996]
  • A

    $^m{C_{k - 1}}$

  • B

    $^m{C_{k + 1}}$

  • C

    $^m{C_k}$

  • D

    इनमें से कोई नहीं {जहाँ $m = \frac{1}{2}(2n - {k^2} + k - 2)$}

Similar Questions

यदि $a$ तथा $d$ दो सम्मिश्र संख्यायें हों, तब   $a\,{C_0} - (a + d)\,{C_1} + (a + 2d)\,{C_2} - ........ + .....$ के $(n + 1)$ पदों का योग है

माना $\alpha=\sum_{k=0}^{\mathrm{n}}\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ तथा $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$ हैं। यदि $5 \alpha=6 \beta$ हैं, तो $\mathrm{n}$ बराबर है ............

  • [JEE MAIN 2024]

श्रेणी $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + $.....के $(n + 1)$ पदों का योग है

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n},$ तो $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =

${n^n}{\left( {\frac{{n + 1}}{2}} \right)^{2n}}$ होगा