माना $m, n \in N$ तथा $\operatorname{gcd}(2, n)=1$ हैं। यदि $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ हैं तो $n + m$ बराबर है I (यहाँ) $\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }$ है।

  • [JEE MAIN 2021]
  • A

    $45$

  • B

    $56$

  • C

    $42$

  • D

    $36$

Similar Questions

माना $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+$ $(x+3)^{n-3} \cdot(x+2)^2+\ldots \ldots .+(x+2)^{n-1}$ के प्रसार में $x^r$ का गुणांक $\alpha_r$ है। यदि $\sum_{\mathrm{r}=0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$ है, तो $\beta^2+\gamma^2$ बराबर है ........

  • [JEE MAIN 2024]

बहुपद $(x - 1)(x - 2)(x - 3).............(x - 100),$ में ${x^{99}}$ का गुणांक होगा  

${(1 + x)^{50}}$ के विस्तार में $x$ की विषम घातों के पदों के गुणांकों का योग होगा

$\frac{1}{{1!(n - 1)\,!}} + \frac{1}{{3!(n - 3)!}} + \frac{1}{{5!(n - 5)!}} + .... = $

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, तो ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ का मान होगा  

  • [IIT 1971]