यदि फलन $f(x) = P{e^{2x}} + Q{e^x} + Rx$ निम्न प्रतिबन्धों को सन्तुष्ट करता है: $f(0) = - 1,$ $f'(\log 2) = 31$ तथा $\int_0^{\log 4} {(f(x) - Rx)\,dx = \frac{{39}}{2}} $ तो $P, Q, R$ के मान हैं
$P = 2,$ $Q = - 3,$ $R = 4$
$P = - 5,$ $Q = 2,$ $R = 3$
$P = 5,$ $Q = - 2,$ $R = 3$
$P = 5,$ $Q = - 6,$ $R = 3$
यदि ${I_1} = \int_0^1 {{2^{{x^2}}}dx,\;} {I_2} = \int_0^1 {{2^{{x^3}}}dx} ,\;{I_3} = \int_1^2 {{2^{{x^2}}}} $ $dx$ और ${I_4} = \int_1^2 {{2^{{x^3}}}dx} $, तब
माना $\frac{d}{{dx}}F(x) = \left( {\frac{{{e^{\sin x}}}}{x}} \right)\,;\,x > 0$. यदि $\int_{\,1}^{\,4} {\frac{3}{x}{e^{\sin {x^3}}}dx = F(k) - F(1)} $, तब $k$ के सभावित मानो में से ऐक है
फलन $L(x) = \int_1^x {\frac{{dt}}{t}} $ निम्न समीकरण को सन्तुष्ट करता है
मान लीजिए कि $[0,1]$ अंतराल में $f$ एक सतत फलन इस प्रकार है कि $\int \limits_0^1 f^2(x) d x=\left(\int \limits_0^1 f(x) d x\right)^2$. तब $f$ का परास $(range)$
माना $\operatorname{Max}_{0 \leq x \leq 2}\left\{\frac{9-x^2}{5-x}\right\}=\alpha$ तथा $\operatorname{Min}_{0 \leq x \leq 2}\left\{\frac{9-x^2}{5-x}\right\}=\beta$ है। यदि
$\int \limits_{\beta-\frac{8}{3}}^{2 \alpha-1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} d x=\alpha_1+\alpha_2 \log _e\left(\frac{8}{15}\right)$
है, तो $\alpha_1+\alpha_2$ बराबर है $..........$