The numbers $P, Q$ and $R$ for which the function $f(x) = P{e^{2x}} + Q{e^x} + Rx$ satisfies the conditions $f(0) = - 1,$ $f'(\log 2) = 31$ and $\int_0^{\log 4} {[f(x) - Rx]\,dx = \frac{{39}}{2}} $ are given by

  • A

    $P = 2,$ $Q = - 3,$ $R = 4$

  • B

    $P = - 5,$ $Q = 2,$ $R = 3$

  • C

    $P = 5,$ $Q = - 2,$ $R = 3$

  • D

    $P = 5,$ $Q = - 6,$ $R = 3$

Similar Questions

Let $f$ be a continuous function defined on $[0,1]$ such that $\int_0^1 f^2(x) d x=\left(\int_0^1 f(x) d x\right)^2$. Then, the range of $f$

  • [KVPY 2016]

If $\frac{d}{{dx}}\,G\left( x \right) = \frac{{{e^{\tan \,x}}}}{x},\,x \in \left( {0,\pi /2} \right)$, then $\int\limits_{1/4}^{1/2} {\frac{2}{x}} .{e^{\tan \,\left( {\pi \,{x^2}} \right)}}dx$ is equal to

  • [AIEEE 2012]

$I=\int \limits_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x$. Then

  • [JEE MAIN 2022]

Let $I = \mathop \smallint \limits_0^1 \frac{{\sin x}}{{\sqrt x }}\;dx$ and $\;J = \mathop \smallint \limits_0^1 \frac{{\cos x}}{{\sqrt x }}\;dx$ Then which one of  the following is true?

  • [AIEEE 2008]

Let $\operatorname{Max} \limits _{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\alpha$ and $\operatorname{Min} \limits _ {0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\beta$

If $\int\limits_{\beta-\frac{8}{3}}^{2 a-1} \operatorname{Max}\left\{\frac{9- x ^{2}}{5- x }, x \right\} dx =\alpha_{1}+\alpha_{2} \log _{e}\left(\frac{8}{15}\right)$ then $\alpha_{1}+\alpha_{2}$ is equal to

  • [JEE MAIN 2022]