मान लीजिए कि $[0,1]$ अंतराल में $f$ एक सतत फलन इस प्रकार है कि $\int \limits_0^1 f^2(x) d x=\left(\int \limits_0^1 f(x) d x\right)^2$. तब $f$ का परास $(range)$
में केवल दो बिंदु हैं
में दो से अधिक बिंदु है
$[0,1]$ का अंतराल है
एकल है
माना एक फलन $f: R \rightarrow R$,$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], \quad a \in R , \quad$ द्वारा परिभाषित है, जहाँ [ $t ]$ महतम पूर्णाक $t$ है। यदि $\lim _{x \rightarrow-1} f(x)$ का अस्तित्व है, तो $\int \limits_0^4 f(x) d x$ का मान बराबर है :
${F_1}(x) = \int_2^x {(2t - 5)\,dt} $ तथा ${F_2}(x) = \int_0^x {2t\,dt,} $ का प्रतिच्छेद बिंदु है
माना $f$ एक धनात्मक फलन है तथा
${I_1} = \int_{1 - k}^k {x\,f\left\{ {x(1 - x)} \right\}} \,dx$, ${I_2} = \int_{1 - k}^k {\,f\left\{ {x(1 - x)} \right\}} \,dx$
जहाँ $2k - 1 > 0$, तब ${I_1}/{I_2}$ का मान होगा
$f:[0,1] \rightarrow R$ जो $\int \limits_0^1 x f(x) d x=\frac{1}{3}+\frac{1}{4} \int \limits_0^1(f(x))^2 d x$
को संतुष्ट करता है, की संख्या होगी ?
यदि $I$ निम्न में से सबसे बड़ा समाकल है
${I_1} = \int_0^1 {{e^{ - x}}{{\cos }^2}x\,dx} , \,\, {I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x\,dx$
${I_3} = \int_0^1 {{e^{ - {x^2}}}dx} ,\,\,{I_4} = \int_0^1 {{e^{ - {x^2}/2}}dx} $ तो