समीकरण $5+\left|2^{x}-1\right|=2^{x}\left(2^{x}-2\right)$ के वास्तविक मूलों की संख्या है
$4$
$3$
$2$
$1$
समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है
समीकरण $\mathrm{e}^{\sin x}-2 \mathrm{e}^{-\sin x}=2$ के हलों की संख्या है
$m$ के पूर्णांक मानों की संख्या, जिसके लिये द्विघात व्यंजक $(1+2 m ) x ^{2}-2(1+3 m ) x +4(1+ m ), x \in R$ सदैव धनात्मक हो, होगी
यदि समीकरण${x^3} + p{x^2} + qx + r = 0$ के दो मूलों का योग शून्य हेा तो $pq$ का मान होगा
यदि $\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$ तो