$m$ के पूर्णांक मानों की संख्या, जिसके लिये द्विघात व्यंजक $(1+2 m ) x ^{2}-2(1+3 m ) x +4(1+ m ), x \in R$ सदैव धनात्मक हो, होगी
$3$
$8$
$7$
$6$
यदि $2 + i$ समीकरण ${x^3} - 5{x^2} + 9x - 5 = 0$ का एक मूल हो तो अन्य मूल होंगे
यदि $x,\;y,\;z$ वास्तविक व भिन्न हों, तो $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - 2xy$हमेशा होगा
यदि $p$ तथा $q$ दो वास्तविक संख्याऐं इस प्रकार है, कि $p + q =3$ तथा $p ^4+ q ^4=369$ है, तो $\left(\frac{1}{ p }+\frac{1}{ q }\right)^{-2}$ का मान होगा-
द्विघात समीकरण $n x^2+7 \sqrt{n} x+n=0$ में $n$ एक धनात्मक पूर्णांक संख्या है. निम्नलिखित में कौन सा कधन निध्रित रूप से सत्य है ?
$I$. किसी भी $n$ के लिए, समीकरण के मूल भिन्न होंगे,
$II$. $n$ के अन्नत मान होंगे यदि दोनों मूल वास्तबिक है.
$III$. मूलों का गुणनफल निश्रय ही एक पूर्णांक है.
समीकरण $\mathrm{e}^{4 \mathrm{x}}+8 \mathrm{e}^{3 \mathrm{x}}+13 \mathrm{e}^{2 \mathrm{x}}-8 \mathrm{e}^{\mathrm{x}}+1=0, \mathrm{x} \in \mathbb{R}:$