The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is
$4$
$3$
$2$
$1$
The number of real solutions of the equation $|x{|^2}$-$3|x| + 2 = 0$ are
If $x, y$ are real numbers such that $3^{(x / y)+1}-3^{(x / y)-1}=24$ then the value of $(x+y) /(x-y)$ is
Let $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ and $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, then $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ holds good for
The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be
If $\alpha, \beta$ are the roots of the equation, $x^2-x-1=0$ and $S_n=2023 \alpha^n+2024 \beta^n$, then