$a\cos x + b\sin x = c,$ નો વ્યાપક ઉકેલ મેળવો. (કે જ્યાં $a,\,\,b,\,\,c$ એ અચળ છે )

  • A

    $x = n\pi + {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$

  • B

    $x = 2n\pi - {\tan ^{ - 1}}\left( {\frac{b}{a}} \right)$

  • C

    $x = 2n\pi - {\tan ^{ - 1}}\left( {\frac{b}{a}} \right) \pm {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$

  • D

    $x = 2n\pi + {\tan ^{ - 1}}\left( {\frac{b}{a}} \right) \pm {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$

Similar Questions

જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, તો $\sin \left( {\theta + \frac{\pi }{4}} \right) = . . . .$

$sin 3\theta = 4 sin\, \theta \,sin \,2\theta \,sin \,4\theta$ નું $0\, \le \,\theta\, \le \, \pi$ માં વાસ્તવિક ઉકેલોની સંખ્યા ................ છે 

જો $A = \left\{ {\theta \,:\,\sin \,\left( \theta  \right) = \tan \,\left( \theta  \right)} \right\}$ અને $B = \left\{ {\theta \,:\,\cos \,\left( \theta  \right) = 1} \right\}$ બે ગણ હોય તો ....

  • [JEE MAIN 2013]

$\cos x=\frac{1}{2}$ ઉકેલો.

જો $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.