સમીકરણ યુગમો $x\,\, + \,\,y\,\, = \,\,\frac{{2\pi }}{3},\,{\rm{cos}}\,{\rm{x + }}\,{\rm{ cos}}\,{\rm{y}}\,{\rm{ = }}\,\frac{3}{2},$ જ્યાં $x$ અને $y$ એ વાસ્તવિક હોય તેવા ઉકેલોનો ગણ ...... છે.
ખાલી ગણ ન હોય તેવો સાન્ત ગણ
ખાલી ગણ
$\infty $
એક પણ નહી
જો કોઈ $0 < \alpha < \frac{\pi }{2}$ માટે ત્રિકોણ ની બાજુઓ $\sin \alpha ,\,\cos \alpha $ અને $\sqrt {1 + \sin \alpha \cos \alpha } $ આપેલ છે તો ત્રિકોણનો સૌથી મોટો ખૂણો......$^o$ મેળવો.
જો $\tan \theta = - \frac{1}{{\sqrt 3 }}$ અને $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, તો $\theta $ ની કિમત મેળવો.
જો $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta + \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ હોય તો $\theta = $
જો $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, તો $\theta $