અંતરાલ $[0,2 \pi]$ માં $x$ ની બધીજ કિમંતોનો સરવાળો કરો કે જેથી $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$ થાય.
$11 \pi$
$12 \pi$
$8 \pi$
$9 \pi$
$\sin 7\theta = \sin 4\theta - \sin \theta $ અને $0 < \theta < \frac{\pi }{2}$ તેવી $\theta $ ની કિમતો મેળવો.
$\alpha=\sin 36^{\circ}$ એ સમીકરણ $\dots\dots\dots$નું એક બીજ છે.
જો $P = \left\{ {\theta :\sin \,\theta - \cos \,\theta = \sqrt 2 \,\cos \,\theta } \right\}$ અને $Q = \left\{ {\theta :\sin \,\theta + \cos \,\theta = \sqrt {2\,} \sin \,\theta } \right\}$ બે ગણ હોય તો
સમીકરણ $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ નું સમાધાન કરે તેવી $\theta $ ની $[0, 2\pi]$ કેટલી કિમત છે.
જો $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, તો $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ = .......