$a\cos x + b\sin x = c$ का व्यापक हल है, जहाँ $a,\,\,b,\,\,c$ नियतांक हैं
$x = n\pi + {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$
$x = 2n\pi - {\tan ^{ - 1}}\left( {\frac{b}{a}} \right)$
$x = 2n\pi - {\tan ^{ - 1}}\left( {\frac{b}{a}} \right) \pm {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$
$x = 2n\pi + {\tan ^{ - 1}}\left( {\frac{b}{a}} \right) \pm {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$
$\tan 3x = 1$ का व्यापक हल है
यदि $2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ तब $x = $
यदि $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13}$ है, जहाँ $x$ तथा $y$ दोनों द्वितीय चतुर्थांश में स्थित हों तो $\sin (x+y)$ का मान ज्ञात कीजिए।
यदि $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, तो $\theta $ का व्यापक मान है
समीकरण $\sin x=\frac{\sqrt{3}}{2}$ का मुख्य हल ज्ञात कीजिए।