The general solution of $a\cos x + b\sin x = c,$ where $a,\,\,b,\,\,c$ are constants

  • A

    $x = n\pi + {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$

  • B

    $x = 2n\pi - {\tan ^{ - 1}}\left( {\frac{b}{a}} \right)$

  • C

    $x = 2n\pi - {\tan ^{ - 1}}\left( {\frac{b}{a}} \right) \pm {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$

  • D

    $x = 2n\pi + {\tan ^{ - 1}}\left( {\frac{b}{a}} \right) \pm {\cos ^{ - 1}}\left( {\frac{c}{{\sqrt {{a^2} + {b^2}} }}} \right)$

Similar Questions

Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then

  • [KVPY 2018]

One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval

The number of solutions of $tan\, (5\pi\, cos\, \theta ) = cot (5 \pi \,sin\, \theta )$ for $\theta$ in $(0, 2\pi )$ is :

The only value of $x$ for which ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ holds, is

The number of solutions of $\sin ^{7} x+\cos ^{7}=1, x \in[0,4 \pi]$ is equal to :

  • [JEE MAIN 2021]