व्यंजक $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$, $x$ के निम्न मान के लिए धनात्मक मान रखता है
$0 \le x \le \frac{\pi }{2}$
$0 \le x \le \pi $
सभी $x \in R$ के लिये
$x \ge 0$
यदि $\cos {40^o} = x$ और $\cos \theta = 1 - 2{x^2}$ हो, तो ${0^o}$ और ${360^o}$ के बीच में $\theta $ के सम्भावित मान हैं
यदि $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, तब $\theta $ का व्यापक मान होगा
यदि $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, तो $\sin \theta $ का मान है
समीकरण, $\sin ^{7} x +\cos ^{7} x =1$ के $x \in[0,4 \pi]$ में हलों की संख्या है -
यदि $\theta $ और $\phi $ न्यूनकोण को सन्तुष्ट करते हैं व $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ तो $\theta $+$\phi $ का मान है