यदि $2{\cos ^2}x + 3\sin x - 3 = 0,\,\,0^\circ \le x \le {180^o}$, तो $x =$
${30^o},{90^o},{150^o}$
${60^o},{120^o},{180^o}$
${0^o},{30^o},{150^o}$
${45^o},{90^o},{135^o}$
निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\sin x+\sin 3 x+\sin 5 x=0$
माना $f:[0,2] \rightarrow R$ एक फलन है जो
$f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)$
द्वारा परिभाषित है। यदि $\alpha, \beta \in[0,2]$ इस प्रकार है कि $\{ x \in[0,2]: f( x ) \geq 0\}=[\alpha, \beta]$ हो, तो $\beta-\alpha$ का मान होगा
निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए
$\cot x=-\sqrt{3}$
अन्तराल $[0, 5 \pi ]$ में $x$ के मानों की संख्या जो समीकरण $3{\sin ^2}x - 7\sin x + 2 = 0$ को संतुष्ट करे, है
समीकरण $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ के हलों में से एक निम्नलिखित अन्तराल में है