The expression $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$ has the positive values for $x$, given by
$0 \le x \le \frac{\pi }{2}$
$0 \le x \le \pi $
For all $x \in R$
$x \ge 0$
Solve $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$
The general solution of ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ is
The solution of $tan\,\, 2\theta\,\, tan\theta = 1$ is
If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in [0,2 \pi ]$ , then maximum integral value of $x$ is
If ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ then the general value of $\theta $ is