निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\sec ^{2} 2 x=1-\tan 2 x$
$\sec ^{2} 2 x=1-\tan 2 x$
$\Rightarrow 1+\tan ^{2} 2 x=1-\tan 2 x$
$\Rightarrow \tan ^{2} 2 x+\tan 2 x=0$
$\Rightarrow \tan 2 x(\tan 2 x+1)=0$
$\Rightarrow \tan 2 x=0 \quad$ or $\quad \tan 2 x+1=0$
Now, $\tan 2 x=0$
$\Rightarrow \tan 2 x=\tan 0$
$\Rightarrow 2 x=n \pi+0,$ where $n \in Z$
$\Rightarrow x=\frac{n \pi}{2},$ where $n \in Z$
$\tan 2 x+1=0$
$\Rightarrow \tan 2 x=-1=-\tan \frac{\pi}{4}=\tan \left(\pi-\frac{\pi}{4}\right)=\tan \frac{3 \pi}{4}$
$\Rightarrow 2 x=n \pi+\frac{3 \pi}{4},$ where $n \in Z$
$\Rightarrow x=\frac{n \pi}{2}+\frac{3 \pi}{8},$ where $n \in Z$
Therefore, the general solution is $\frac{n \pi}{2}$ or $\frac{n \pi}{2}+\frac{3 \pi}{8}, n \in Z$
समीकरण $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$ का व्यापक हल होगा
अन्तराल $[0, 5 \pi ]$ में $x$ के मानों की संख्या जो समीकरण $3{\sin ^2}x - 7\sin x + 2 = 0$ को संतुष्ट करे, है
मान लें $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$
यदि $\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, जहाँ $0 < \theta < {180^o}$, तो $\theta =$
$A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ और $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ दो समूह होते हैं। तब