ટૂંકી રીતનો ઉપયોગ કરીને મધ્યક અને પ્રમાણિત વિચલન શોધો.
${x_i}$ | $60$ | $61$ | $62$ | $63$ | $64$ | $65$ | $66$ | $67$ | $68$ |
${f_i}$ | $2$ | $1$ | $12$ | $29$ | $25$ | $12$ | $10$ | $4$ | $5$ |
The data is obtained in tabular form as follows.
${x_i}$ | ${f_i}$ | ${f_i} = \frac{{{x_i} - 64}}{1}$ | ${y_i}^2$ | ${f_i}{y_i}$ | ${f_i}{y_i}^2$ |
$60$ | $2$ | $-4$ | $16$ | $-8$ | $32$ |
$61$ | $1$ | $-3$ | $9$ | $-3$ | $9$ |
$62$ | $12$ | $-2$ | $4$ | $-24$ | $48$ |
$63$ | $29$ | $-1$ | $1$ | $-29$ | $29$ |
$64$ | $25$ | $0$ | $0$ | $0$ | $0$ |
$65$ | $12$ | $1$ | $1$ | $12$ | $12$ |
$66$ | $10$ | $2$ | $4$ | $20$ | $40$ |
$67$ | $4$ | $3$ | $9$ | $12$ | $36$ |
$68$ | $5$ | $4$ | $16$ | $20$ | $80$ |
$100$ | $220$ | $0$ | $286$ |
Mean, $\bar x = A\frac{{\sum\limits_{i = 1}^9 {{f_i}{y_i}} }}{N} \times h = 64 + \frac{0}{{100}} \times 1 = 64 + 0 = 64$
Variance, ${\sigma ^2} = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^9 {{f_i}{y_i}^2 - \left( {\sum\limits_{i = 1}^9 {{f_i}{y_i}^2} } \right)} } \right]$
$=\frac{1}{100^{2}}[100 \times 286-0]$
$=2.86$
$\therefore$ Standard deviation $(\sigma)=\sqrt{2.86}=1.69$
જો $n$ અવલોકનો $x_1, x_2, …… x_n$ નો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $\bar x$અને $\sigma$ હોય તો અવલોકનોના વર્ગનો સરવાળો કેટલો થાય ?
$10$ વિદ્યાર્થીઓના ગુણના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $12$ જોવામાં આવેલ છે.ત્યાર બાદ એવુ જોવામાં આવ્યું કે બે ગુણ $20$ અને $25$ ને ખોટી રીતે અનુક્રમે $45$ અને $50$ વાંચવામાં આવ્યા હતા. તો સાચું વિચરણ $......$ છે.
$6$ અવલોકનો $a$, $b,$ $68,$ $44,$ $48,$ $60$ ના મધ્યક અને વિચરણ અનુક્કમે $55$ અને $194$ છે. જો $a > b,$ તો $a +$ $3 b=$..........................
ધારો કે વસ્તી $A $ એ $100 $ અવલોકનો $101, 102, ..... 200$ અને બીજી વસ્તી $B$ એ $100 $ અવલોકનો $151, 152, ...... 250 $ ધરાવે છે. જો $V_A $ અને $V_B$ એ અનુક્રમે બંને વસ્તીઓનું વિચરણ દર્શાવે તો $V_A / V_B$ શું થાય ?
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
$6,7,10,12,13,4,8,12$