આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
$6,7,10,12,13,4,8,12$
$6,7,10,12,13,4,8,12$
Mean, $\bar x = \frac{{\sum\limits_{i = 1}^8 {{x_i}} }}{n}$
$=\frac{6+7+10+12+13+4+8+12}{8}=\frac{72}{8}=9$
The following table is obtained
${x_i}$ | $\left( {{x_i} - \bar x} \right)$ | ${\left( {{x_i} - \bar x} \right)^2}$ |
$6$ | $-3$ | $9$ |
$7$ | $-2$ | $4$ |
$10$ | $-1$ | $1$ |
$12$ | $3$ | $9$ |
$13$ | $4$ | $16$ |
$4$ | $-5$ | $25$ |
$8$ | $-1$ | $1$ |
$12$ | $3$ | $9$ |
$74$ |
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^8 {{{\left( {{x_i} - \bar x} \right)}^2} = \frac{1}{8} \times 74} = 9.25$
ધારે કે કોઈ વર્ગમાં $7$ વિદ્યાર્થીઓ છે. આ વિદ્યાર્થીઓના ગણીત વિષયની પરીક્ષાના ગુણોની સરેેારાશ $62$ છે. તથા વિચરણ $20$ છે. જે $50$ કરતાં ઓછા ગુણ મેળવે તો વિદ્યાર્થી આ પરિક્ષામાં નાપાસ માનવામાં આવે, તો ખરાબમાં ખરાબ સ્થિતિમાં નાપાસ પનાર વિદ્યાર્થીઓની સંખ્યા...........છે.
એક વિદ્યાર્થીએ એક અવલોકન ભૂલથી $15$ ને બદલે $25$ લઈને ગણેલ $10$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $15$ અને $15$ છે. તી સાયું પ્રમાણિત વિચલન ............ છે.
પ્રથમ પ્રાકૃતિક $n$ સંખ્યાઓ માટે પ્રમાણિત વિચલન મેળવો
પાંચ અવલોકનોનો મધ્યક અને પ્રમાણિત વિચલન $(s.d.)$ અનુક્રમે $9$ અને $0$ છે જો તેમાંથી એક અવલોકનને બદલી નાખવામાં આવે કે જેથી તેમનો મધ્યક $10$ થાય તો તેમનું પ્રમાણિત વિચલન $(s.d.)$ =