આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :

$6,7,10,12,13,4,8,12$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$6,7,10,12,13,4,8,12$

Mean,    $\bar x = \frac{{\sum\limits_{i = 1}^8 {{x_i}} }}{n}$

$=\frac{6+7+10+12+13+4+8+12}{8}=\frac{72}{8}=9$

The following table is obtained

${x_i}$ $\left( {{x_i} - \bar x} \right)$ ${\left( {{x_i} - \bar x} \right)^2}$
$6$ $-3$ $9$
$7$ $-2$ $4$
$10$ $-1$ $1$
$12$ $3$ $9$
$13$ $4$ $16$
$4$ $-5$ $25$
$8$ $-1$ $1$
$12$ $3$ $9$
    $74$

Variance  $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^8 {{{\left( {{x_i} - \bar x} \right)}^2} = \frac{1}{8} \times 74}  = 9.25$

Similar Questions

ધારે કે કોઈ વર્ગમાં $7$ વિદ્યાર્થીઓ છે. આ વિદ્યાર્થીઓના ગણીત વિષયની પરીક્ષાના ગુણોની સરેેારાશ $62$ છે. તથા વિચરણ $20$ છે. જે $50$ કરતાં ઓછા ગુણ મેળવે તો વિદ્યાર્થી આ પરિક્ષામાં નાપાસ માનવામાં આવે, તો ખરાબમાં ખરાબ સ્થિતિમાં નાપાસ પનાર વિદ્યાર્થીઓની સંખ્યા...........છે.

  • [JEE MAIN 2022]

એક વિદ્યાર્થીએ એક અવલોકન ભૂલથી $15$ ને બદલે $25$ લઈને ગણેલ $10$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $15$ અને $15$ છે. તી સાયું પ્રમાણિત વિચલન ............ છે.

  • [JEE MAIN 2022]

અહી $x _1, x _2, \ldots \ldots x _{10}$ દસ અવલોકન આપેલ છે કે જેથી $\sum_{i=1}^{10}\left(x_i-2\right)=30, \sum_{i=1}^{10}\left(x_i-\beta\right)^2=98, \beta>2$ અને તેઓના વિચરણ $\frac{4}{5}$ થાય. જો $\mu$ અને $\sigma^2$ એ અનુક્રમે  $2\left( x _1-1\right)+4 \beta, 2\left( x _2-1\right)+$ $4 \beta, \ldots . ., 2\left(x_{10}-1\right)+4 \beta$ ના મધ્યક અને વિચરણ હોય તો $\frac{\beta \mu}{\sigma^2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]

પ્રથમ પ્રાકૃતિક $n$ સંખ્યાઓ માટે પ્રમાણિત વિચલન મેળવો 

પાંચ અવલોકનોનો મધ્યક અને પ્રમાણિત વિચલન $(s.d.)$ અનુક્રમે $9$ અને $0$ છે જો તેમાંથી એક અવલોકનને બદલી નાખવામાં આવે કે જેથી તેમનો મધ્યક $10$ થાય તો તેમનું પ્રમાણિત વિચલન $(s.d.)$ = 

  • [JEE MAIN 2018]