$10$ વિદ્યાર્થીઓના ગુણના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $12$ જોવામાં આવેલ છે.ત્યાર બાદ એવુ જોવામાં આવ્યું કે બે ગુણ $20$ અને $25$ ને ખોટી રીતે અનુક્રમે $45$ અને $50$ વાંચવામાં આવ્યા હતા. તો સાચું વિચરણ $......$ છે.

  • [JEE MAIN 2023]
  • A

    $265$

  • B

    $269$

  • C

    $264$

  • D

    $289$

Similar Questions

નીચે આપેલ માહિતીનું વિચરણ શોધો.

વસ્તુ નું કદ 

$3.5$

$4.5$

$5.5$

$6.5$

$7.5$

$8.5$

$9.5$

આવ્રુતિ 

 $3$

$ 7$

$22$

$60$

$85$

$32$

$8$

જે શ્રેણીનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ હોય તેવી સમાંતર શ્રેણીના પ્રથમ $n$ પદો માટે મધ્યક અને પ્રમાણિત વિચલન મેળવો 

પ્રથમ પ્રાકૃતિક $n$ સંખ્યાઓ માટે પ્રમાણિત વિચલન મેળવો 

અહી $x _1, x _2, \ldots \ldots x _{10}$ દસ અવલોકન આપેલ છે કે જેથી $\sum_{i=1}^{10}\left(x_i-2\right)=30, \sum_{i=1}^{10}\left(x_i-\beta\right)^2=98, \beta>2$ અને તેઓના વિચરણ $\frac{4}{5}$ થાય. જો $\mu$ અને $\sigma^2$ એ અનુક્રમે  $2\left( x _1-1\right)+4 \beta, 2\left( x _2-1\right)+$ $4 \beta, \ldots . ., 2\left(x_{10}-1\right)+4 \beta$ ના મધ્યક અને વિચરણ હોય તો $\frac{\beta \mu}{\sigma^2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]

વિધાન $1$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વિચરણ $\frac{{{n^2} - 1}}{3}$ થાય 
વિધાન $2$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો સરવાળો $n^2$ અને પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વર્ગોનો સરવાળો $\frac{{n\left( {4{n^2} + 1} \right)}}{3}$ થાય 

  • [AIEEE 2012]