ધારો કે વસ્તી  $A $ એ $100 $ અવલોકનો $101, 102, ..... 200$ અને બીજી વસ્તી $B$ એ $100 $ અવલોકનો $151, 152, ...... 250 $ ધરાવે છે. જો $V_A $ અને $V_B$  એ અનુક્રમે બંને વસ્તીઓનું વિચરણ દર્શાવે તો $V_A / V_B$ શું થાય ?

  • A

    $9/4$

  • B

    $4/9$

  • C

    $2/3$

  • D

    $1$

Similar Questions

ધારો કે,$9 < x_1 < x_2 < \ldots < x_7$ એ સમાંતર શ્રેણી $(A.P)$ માં છે અને તેનો સામાન્ય તફાવત $d$ છે.જો $x_1, x_2 \ldots,x _7$ નું પ્રમાણિત વિચલન $4$ હોય અને મધ્યક $\overline{ x }$ હોય,તો $\overline{ x }+ x _6=............$

  • [JEE MAIN 2023]

જો $\sum_{i=1}^{5}(x_i-10)=5$ અને $\sum_{i=1}^{5}(x_i-10)^2=5$ હોય તો અવલોકનો $2x_1 + 7, 2x_2 + 7, 2x_3 + 7, 2x_4 + 7$ અને $2x_5 + 7$ નો પ્રમાણિત વિચલન મેળવો 

જો $100$ વસ્તુઓના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $4$ હોય તો બધી વસ્તુઓનો સરવાળો મેળવો અને બધી વસ્તુઓના વર્ગોનો સરવાળો મળવો 

નીચે આપેલ વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલનની ગણતરી કરો : 

વર્ગ

$30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$

આવૃત્તિ

$3$ $7$ $12$ $15$ $8$ $3$ $2$

ધારોકે નીચેના વિતરણ નું મધ્યક $\mu$ અને પ્રમાણિત વિચલન $\sigma$ છે. 

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

 જ્યાં $\sum f_i=62$. જો $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે,તો $\left[\mu^2+\sigma^2\right]=.......$

  • [JEE MAIN 2023]