The data is obtained in tabular form as follows.
${x_i}$ | $60$ | $61$ | $62$ | $63$ | $64$ | $65$ | $66$ | $67$ | $68$ |
${f_i}$ | $2$ | $1$ | $12$ | $29$ | $25$ | $12$ | $10$ | $4$ | $5$ |
The data is obtained in tabular form as follows.
${x_i}$ | ${f_i}$ | ${f_i} = \frac{{{x_i} - 64}}{1}$ | ${y_i}^2$ | ${f_i}{y_i}$ | ${f_i}{y_i}^2$ |
$60$ | $2$ | $-4$ | $16$ | $-8$ | $32$ |
$61$ | $1$ | $-3$ | $9$ | $-3$ | $9$ |
$62$ | $12$ | $-2$ | $4$ | $-24$ | $48$ |
$63$ | $29$ | $-1$ | $1$ | $-29$ | $29$ |
$64$ | $25$ | $0$ | $0$ | $0$ | $0$ |
$65$ | $12$ | $1$ | $1$ | $12$ | $12$ |
$66$ | $10$ | $2$ | $4$ | $20$ | $40$ |
$67$ | $4$ | $3$ | $9$ | $12$ | $36$ |
$68$ | $5$ | $4$ | $16$ | $20$ | $80$ |
$100$ | $220$ | $0$ | $286$ |
Mean, $\bar x = A\frac{{\sum\limits_{i = 1}^9 {{f_i}{y_i}} }}{N} \times h = 64 + \frac{0}{{100}} \times 1 = 64 + 0 = 64$
Variance, ${\sigma ^2} = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^9 {{f_i}{y_i}^2 - \left( {\sum\limits_{i = 1}^9 {{f_i}{y_i}^2} } \right)} } \right]$
$=\frac{1}{100^{2}}[100 \times 286-0]$
$=2.86$
$\therefore$ Standard deviation $(\sigma)=\sqrt{2.86}=1.69$
Suppose values taken by a variable $x$ are such that $a \le {x_i} \le b$, where ${x_i}$ denotes the value of $x$ in the $i^{th}$ case for $i = 1, 2, ...n.$ Then..
The first of the two samples in a group has $100$ items with mean $15$ and standard deviation $3 .$ If the whole group has $250$ items with mean $15.6$ and standard deviation $\sqrt{13.44}$, then the standard deviation of the second sample is:
Mean and standard deviation of 100 items are 50 and $4,$ respectively. Then find the sum of all the item and the sum of the squares of the items.
If for a distribution $\Sigma(x-5)=3, \Sigma(x-5)^{2}=43$ and the total number of item is $18,$ find the mean and standard deviation.
The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.