लघु विधि द्वारा माध्य व मानक विचलन ज्ञात कीजिए।

${x_i}$ $60$ $61$ $62$ $63$ $64$ $65$ $66$ $67$ $68$
${f_i}$ $2$ $1$ $12$ $29$ $25$ $12$ $10$ $4$ $5$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The data is obtained in tabular form as follows.

${x_i}$ ${f_i}$ ${f_i} = \frac{{{x_i} - 64}}{1}$ ${y_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$60$ $2$ $-4$ $16$ $-8$ $32$
$61$ $1$ $-3$ $9$ $-3$ $9$
$62$ $12$ $-2$ $4$ $-24$ $48$
$63$ $29$ $-1$ $1$ $-29$ $29$
$64$ $25$ $0$ $0$ $0$ $0$
$65$ $12$ $1$ $1$ $12$ $12$
$66$ $10$ $2$ $4$ $20$ $40$
$67$ $4$ $3$ $9$ $12$ $36$
$68$ $5$ $4$ $16$ $20$ $80$
  $100$ $220$   $0$ $286$

Mean, $\bar x = A\frac{{\sum\limits_{i = 1}^9 {{f_i}{y_i}} }}{N} \times h = 64 + \frac{0}{{100}} \times 1 = 64 + 0 = 64$

Variance,   ${\sigma ^2} = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^9 {{f_i}{y_i}^2 - \left( {\sum\limits_{i = 1}^9 {{f_i}{y_i}^2} } \right)} } \right]$

$=\frac{1}{100^{2}}[100 \times 286-0]$

$=2.86$

$\therefore$ Standard deviation $(\sigma)=\sqrt{2.86}=1.69$

Similar Questions

आंकडों

$x_i$ $0$ $1$ $5$ $6$ $10$ $12$ $17$
$f_i$ $3$ $2$ $3$ $2$ $6$ $3$ $3$

का प्रसरण $\sigma^2$ बराबर है ..........

  • [JEE MAIN 2024]

माना चार संख्याओं $3,7, x$ तथा $y ( x > y )$ के माध्य तथा प्रसरण क्रमशः $5$ तथा $10$ है। तो चार संख्याओं $3+2 x , 7+2 y , x + y$ तथा $x - y$ का माध्य ............ है

  • [JEE MAIN 2021]

$10$ छात्रों के अंकों के माध्य तथा मानक विचलन क्रमशः $50$ तथा $12$ ज्ञात किए गए। बाद में यह देखा गया कि दो छात्रों के अंक $20$ तथा $25$ गलती से क्रमशः $45$ तथा $50$ पढ़े गए थे। तो सही प्रसरण है_______________.

  • [JEE MAIN 2023]

निम्नलिखित आँकड़ों से बताइए कि $A$ या $B$ में से किस में अधिक बिखराव है

अंक $10-20$ $20-30$ $30-40$ $40-50$ $50-60$ $60-70$ $70-80$
समूह $A$ $9$ $17$ $32$ $33$ $40$ $10$ $9$
समूह $B$ $10$ $20$ $30$ $25$ $43$ $15$ $7$

किसी प्रयोग में $x$ पर $15$ प्रेक्षणों के निम्न परिणाम प्राप्त होते हैं, $\sum {x^2} = 2830$, $\sum x = 170$. प्रेक्षण करने पर एक मान $20$ गलत पाया गया तथा उसे सही मान $30$ से प्रतिस्थापित किया गया। तब सही प्रसरण है...

  • [AIEEE 2003]