$6$ અવલોકનો $a$, $b,$ $68,$ $44,$ $48,$ $60$ ના મધ્યક અને વિચરણ અનુક્કમે $55$ અને $194$ છે. જો $a > b,$ તો $a +$ $3 b=$..........................

  • [JEE MAIN 2024]
  • A

    $200$

  • B

    $190$

  • C

    $180$

  • D

    $210$

Similar Questions

$50 $ મધ્યક વાળા $10$  અવલોકનોના વિચલનના વર્ગનો સરવાળો $250 $ હોય તો વિચરણનો ચલનાંક કેટલો થાય ?

જો આપેલ દરેક $n$ અવલોકનો ને કોઈ ધન સંખ્યા $'k'$ વડે ગુણવવામાં આવે તો નવા અવલોકનોના ગણ માટે 

ધારોકે નીચેના વિતરણ નું મધ્યક $\mu$ અને પ્રમાણિત વિચલન $\sigma$ છે. 

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

 જ્યાં $\sum f_i=62$. જો $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે,તો $\left[\mu^2+\sigma^2\right]=.......$

  • [JEE MAIN 2023]

જો માહિતી $x_1, x_2, ...., x_{10}$ એવી હોય કે જેથી પ્રથમ ચાર અવલોકનોનો મધ્યક $11$ અને બાકીના છ અવલોકનોનો મધ્યક $16$ તથા બધા અવલોકનોના વર્ગોનો સરવાળો $2,000$ થાય તો આ માહિતીનું પ્રમાણિત વિચલન મેળવો

  • [JEE MAIN 2019]

$20$ અવલોકનનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2.5$ છે. એક અવલોકન ભૂલ થી $35$ ને બદલે $25$ લેવાય ગયું છે. જો $\alpha$ અને $\sqrt{\beta}$ એ સાચી માહિતીના મધ્યક અને પ્રમાણિત વિચલન છે તો $(\alpha, \beta)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]