The Boolean Expression $\left( {p\;\wedge \sim q} \right)\;\;\vee \;q\;\;\vee \left( { \sim p\wedge q} \right)$ is equivalent to:

  • [JEE MAIN 2016]
  • A

    $p\;\vee \;q$

  • B

    $\;p\;\vee \; \sim q$

  • C

    $ \sim \;p\; \wedge \;q$

  • D

    $\;p\; \wedge \;q$

Similar Questions

The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is

  • [JEE MAIN 2020]

The proposition $ \sim \left( {p\,\vee \sim q} \right) \vee  \sim \left( {p\, \vee q} \right)$ is logically equivalent to

  • [JEE MAIN 2014]

The statement $(p \wedge(\sim q) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))$ is equivalent to

  • [JEE MAIN 2023]

Statement$-I :$  $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim  q)\vee \sim  (p\vee \sim  q) .$
Statement$-II :$  $p\rightarrow (p\rightarrow q)$ is a tautology.

Let $p$ and $q$ be two statements.Then $\sim( p \wedge( p \Rightarrow \sim q ))$ is equivalent to

  • [JEE MAIN 2023]