The Boolean Expression $\left( {p\;\wedge \sim q} \right)\;\;\vee \;q\;\;\vee \left( { \sim p\wedge q} \right)$ is equivalent to:
$p\;\vee \;q$
$\;p\;\vee \; \sim q$
$ \sim \;p\; \wedge \;q$
$\;p\; \wedge \;q$
The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is
The proposition $ \sim \left( {p\,\vee \sim q} \right) \vee \sim \left( {p\, \vee q} \right)$ is logically equivalent to
The statement $(p \wedge(\sim q) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))$ is equivalent to
Statement$-I :$ $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim q)\vee \sim (p\vee \sim q) .$
Statement$-II :$ $p\rightarrow (p\rightarrow q)$ is a tautology.
Let $p$ and $q$ be two statements.Then $\sim( p \wedge( p \Rightarrow \sim q ))$ is equivalent to