Let $p$ and $q$ be two statements.Then $\sim( p \wedge( p \Rightarrow \sim q ))$ is equivalent to
$p \vee( p \wedge(\sim q ))$
$p \vee((\sim p ) \wedge q )$
$(\sim p ) \vee q$
$p \vee( p \wedge q )$
Which of the following Boolean expression is a tautology ?
Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is
Which of the following statements is a tautology?
Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
The contrapositive of the statement "If I reach the station in time, then I will catch the train" is