Statement$-I :$  $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim  q)\vee \sim  (p\vee \sim  q) .$
Statement$-II :$  $p\rightarrow (p\rightarrow q)$ is a tautology.

  • A

    Statement$-1$ is True, Statement$-2$ is True; Statement$-2$ is a correct explanation for Statement$-1.$

  • B

    Statement$-1$ is True, Statement$-2$ is True; Statement$-2$ is NOT a correct explanation for Statement$-1.$

  • C

    Statement$-1$ is True, Statement$-2$ is False.

  • D

    Statement$-1$ and Statement$-2$ both are False

Similar Questions

The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to

The number of choices of $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$, such that $( p \Delta q ) \Rightarrow(( p \Delta \sim q ) \vee((\sim p ) \Delta q ))$ is a tautology, is

  • [JEE MAIN 2022]

The statement $A \rightarrow( B \rightarrow A )$ is equivalent to

  • [JEE MAIN 2021]

The conditional $(p \wedge q) ==> p$ is

The contrapositive of the statement "If it is raining, then I will not come", is

  • [JEE MAIN 2015]