Statement$-I :$ $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim q)\vee \sim (p\vee \sim q) .$
Statement$-II :$ $p\rightarrow (p\rightarrow q)$ is a tautology.
Statement$-1$ is True, Statement$-2$ is True; Statement$-2$ is a correct explanation for Statement$-1.$
Statement$-1$ is True, Statement$-2$ is True; Statement$-2$ is NOT a correct explanation for Statement$-1.$
Statement$-1$ is True, Statement$-2$ is False.
Statement$-1$ and Statement$-2$ both are False
The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to
The number of choices of $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$, such that $( p \Delta q ) \Rightarrow(( p \Delta \sim q ) \vee((\sim p ) \Delta q ))$ is a tautology, is
The statement $A \rightarrow( B \rightarrow A )$ is equivalent to
The conditional $(p \wedge q) ==> p$ is
The contrapositive of the statement "If it is raining, then I will not come", is