The proposition $ \sim \left( {p\,\vee \sim q} \right) \vee \sim \left( {p\, \vee q} \right)$ is logically equivalent to
$p$
$q$
$\sim p$
$\sim q$
The proposition $p \rightarrow \sim( p \wedge \sim q )$ is equivalent to
The negation of the Boolean expression $((\sim q) \wedge p) \Rightarrow((\sim p) \vee q)$ is logically equivalent to
The negation of $(p \wedge(\sim q)) \vee(\sim p)$ is equivalent to
If $p \Rightarrow (\sim p \vee q)$ is false, the truth values of $p$ and $q$ are respectively
$(p\; \wedge \sim q) \wedge (\sim p \vee q)$ is