नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।

$(i)$ प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है।

$(ii)$ संख्या रेखा का प्रत्येक बिन्दु $\sqrt{m}$ के रूप का होता है, जहाँ $m$ एक प्राकृत संख्या है।

$(iii)$ प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i)$ True ; since the collection of real numbers is made up of rational and irrational numbers.

$(ii)$ False ; as negative numbers cannot be expressed as the square root of any other number.

$(iii)$ False ; as real numbers include both rational and irrational numbers. Therefore, every real number cannot be an irrational number.

Similar Questions

$\frac{5}{\sqrt{3}-\sqrt{5}}$ के हर का परिमेयकरण कीजिए।

$1$ और $2$ के बीच की पाँच परिमेय संख्याएँ ज्ञात कीजिए।

निम्नलिखित को $\frac{p}{q}$ के रूप में व्यक्त कीजिए, जहाँ $p$ और $q$ पूर्णांक हैं तथा $q \neq 0$ है

$(i)$ $0 . \overline{6}$

$(ii)$ $0 . 4\overline{7}$

$(iii)$ $0 . \overline{001}$

$\frac{3}{5}$ और $\frac{4}{5}$ के बीच पाँच परिमेय संख्याएँ ज्ञात कीजिए।

आपको याद होगा कि $\pi$ को एक वृत्त की परिधि (मान लीजिए $c$ ) और उसके व्यास (मान लीजिए $d$ ) के अनुपात से परिभाषित किया जाता है, अर्थात् $\pi=\frac{c}{d}$ है। यह इस तथ्य का अंतर्विरोध करता हुआ प्रतीत होता है कि $\pi$ अपरिमेय है। इस अंतर्विरोध का निराकरण आप किस प्रकार करेंगे ?