Prove that
$3 \sin \frac{\pi}{6} \sec \frac{\pi}{3}-4 \sin \frac{5 \pi}{6} \cot \frac{\pi}{4}=1$
Solution We have
${\text{ L}}{\text{.H}}{\text{.S}}{\text{.}} = 3\sin \frac{\pi }{6}\sec \frac{\pi }{3} - 4\sin \frac{{5\pi }}{6}\cot \frac{\pi }{4}$
$ = 3 \times \frac{1}{2} \times 2 - 4\sin \left( {\pi - \frac{\pi }{6}} \right) \times 1 = 3 - 4\sin \frac{\pi }{6}$
$ = 3 - 4 \times \frac{1}{2} = 1 = R.H.S$
If ${\sin ^2}\theta = \frac{{{x^2} + {y^2} + 1}}{{2x}}$, then $x$ must be
Prove that: $(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2} \frac{x+y}{2}$
Which of the following is correct
If $\tan \theta = - \frac{1}{{\sqrt {10} }}$ and $\theta $ lies in the fourth quadrant, then $\cos \theta = $
The value of $k$, for which ${(\cos x + \sin x)^2} + k\,\sin x\cos x - 1 = 0$ is an identity, is