Prove that

$3 \sin \frac{\pi}{6} \sec \frac{\pi}{3}-4 \sin \frac{5 \pi}{6} \cot \frac{\pi}{4}=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Solution We have

${\text{ L}}{\text{.H}}{\text{.S}}{\text{.}} = 3\sin \frac{\pi }{6}\sec \frac{\pi }{3} - 4\sin \frac{{5\pi }}{6}\cot \frac{\pi }{4}$

$ = 3 \times \frac{1}{2} \times 2 - 4\sin \left( {\pi  - \frac{\pi }{6}} \right) \times 1 = 3 - 4\sin \frac{\pi }{6}$

$ = 3 - 4 \times \frac{1}{2} = 1 = R.H.S$

Similar Questions

If $\sin \theta + {\rm{cosec}}\theta = {\rm{2}}$, then ${\sin ^2}\theta + {\rm{cose}}{{\rm{c}}^{\rm{2}}}\theta = $

If $\sin \theta = - \frac{1}{{\sqrt 2 }}$ and $\tan \theta = 1,$ then $\theta $ lies in which quadrant

If $\sin x + {\sin ^2}x = 1,$ then ${\cos ^8}x + 2{\cos ^6}x + {\cos ^4}x = $

If $\sin \theta = \frac{{ - 4}}{5}$ and $\theta $ lies in the third quadrant, then $\cos \frac{\theta }{2} = $

Find the radian measures corresponding to the following degree measures:

$-47^{\circ} 30^{\prime}$