If $\sin \theta = \frac{{ - 4}}{5}$ and $\theta $ lies in the third quadrant, then $\cos \frac{\theta }{2} = $

  • A

    $\frac{1}{{\sqrt 5 }}$

  • B

    $ - \frac{1}{{\sqrt 5 }}$

  • C

    $\sqrt {\frac{2}{5}} $

  • D

    $ - \sqrt {\frac{2}{5}} $

Similar Questions

Let $A, B$ and $C$ are the angles of a plain triangle and $\tan \frac{A}{2} = \frac{1}{3},\,\,\tan \frac{B}{2} = \frac{2}{3}$. Then $\tan \frac{C}{2}$ is equal to

Prove that: $\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x$

Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2},$ if $\tan x=\frac{-4}{3}, x$ in quadrant $II$

The value of $k$, for which ${(\cos x + \sin x)^2} + k\,\sin x\cos x - 1 = 0$ is an identity, is

If $\tan \theta = \frac{{20}}{{21}},$ cos$\theta$ will be