Find the radian measures corresponding to the following degree measures:

$-47^{\circ} 30^{\prime}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$-47^{\circ} 30^{\prime}-47 \frac{1}{2}$

$=\frac{-95}{2}$ degree

since $180^{\circ}=\pi$ radian

$\frac{-95}{2}$ degree $=\frac{\pi}{180} \times\left(\frac{-95}{2}\right)$ radian $=\left(\frac{-19}{36 \times 2}\right) \pi$ radian $=\frac{-19}{72} \pi$ radian

$\therefore-47^{\circ} 30^{\prime}=\frac{-19}{72} \pi$ radian

Similar Questions

Prove that

$3 \sin \frac{\pi}{6} \sec \frac{\pi}{3}-4 \sin \frac{5 \pi}{6} \cot \frac{\pi}{4}=1$

If $\sin \theta = \frac{{24}}{{25}}$ and $\theta $ lies in the second quadrant, then $\sec \theta + \tan \theta = $

Prove that: $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$

If $\frac{\sin ^4 x}{2}+\frac{\cos ^4 x}{3}=\frac{1}{5},$ then

$(A)$ $\tan ^2 x=\frac{2}{3}$ $(B)$ $\frac{\sin ^8 x}{8}+\frac{\cos ^8 x}{27}=\frac{1}{125}$

$(C)$ $\tan ^2 x=\frac{1}{3}$ $(D)$ $\frac{\sin ^8 x}{8}+\frac{\cos ^8 x}{27}=\frac{2}{125}$

  • [IIT 2009]

If $A = 130^\circ $ and $x = \sin A + \cos A,$ then