Find the radian measures corresponding to the following degree measures:
$-47^{\circ} 30^{\prime}$
$-47^{\circ} 30^{\prime}-47 \frac{1}{2}$
$=\frac{-95}{2}$ degree
since $180^{\circ}=\pi$ radian
$\frac{-95}{2}$ degree $=\frac{\pi}{180} \times\left(\frac{-95}{2}\right)$ radian $=\left(\frac{-19}{36 \times 2}\right) \pi$ radian $=\frac{-19}{72} \pi$ radian
$\therefore-47^{\circ} 30^{\prime}=\frac{-19}{72} \pi$ radian
Which of the following relations is possible
Find the value of the trigonometric function $\tan \frac{19 \pi}{3}$.
The equation ${(a + b)^2} = 4ab\,{\sin ^2}\theta $ is possible only when
If ${\sin ^2}\theta = \frac{{{x^2} + {y^2} + 1}}{{2x}}$, then $x$ must be
Which of the following relations is correct