If $\sin \theta = - \frac{1}{{\sqrt 2 }}$ and $\tan \theta = 1,$ then $\theta $ lies in which quadrant

  • A

    First

  • B

    Second

  • C

    Third

  • D

    Fourth

Similar Questions

If $\left| {\,a\,{{\sin }^2}\theta + b\sin \theta \cos \theta + c\,{{\cos }^2}\theta - \frac{1}{2}(a + c)\,} \right|\, \le \frac{1}{2}k,$ then ${k^2}$ is equal to

Prove that :

$\cot ^{2} \frac{\pi}{6}+\cos ec \,\frac{5 \pi}{6}+3 \tan ^{2}\, \frac{\pi}{6}=6$

If $\sin x+\sin ^2 x=1, x \in\left(0, \frac{\pi}{2}\right)$, then $\left(\cos ^{12} x+\tan ^{12} x\right)+3\left(\cos ^{10} x+\tan ^{10} x+\cos ^8 x+\tan ^8 x\right)$ $+\left(\cos ^6 x+\tan ^6 x\right)$ is equal to

  • [JEE MAIN 2025]

If $\sin {\theta _1} + \sin {\theta _2} + \sin {\theta _3} = 3,$ then $\cos {\theta _1} + \cos {\theta _2} + \cos {\theta _3} = $

$\frac{{\sin \theta }}{{1 - \cot \theta }} + \frac{{\cos \theta }}{{1 - \tan \theta }} = $