सिद्ध कीजिए
$(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$
$L.H.S.$ $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}$
$=\cos ^{2} x+\cos ^{2} y-2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y$
$=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)-2[\cos x \cos y+\sin x \sin y]$
$=1+1-2[\cos (x-y)]$
$[\cos (A-B)=\cos A \cos B+\sin A \sin B]$
$=2[1-\cos (x-y)]$
$=2\left[1-\left\{1-2 \sin ^{2}\left(\frac{x-y}{2}\right)\right\}\right] \quad\left[\cos 2 A=1-2 \sin ^{2} A\right]$
$=4 \sin ^{2}\left(\frac{x-y}{2}\right)= R . H.S.$
यदि $\cos \theta - \sin \theta = \sqrt 2 \sin \theta ,$ तो $\cos \theta + \sin \theta $ बराबर होगा
यदि $\cos (\alpha - \beta ) = 1$ तथा $\cos (\alpha + \beta ) = \frac{1}{e}$, $ - \pi < \alpha ,\beta < \pi $, तो युग्म $(\alpha ,\beta )$ के कुल मान है
$\tan \frac{19 \pi}{3}$ के मान ज्ञात कीजिए
यदि $x\sin 45^\circ {\cos ^2}60^\circ = \frac{{{{\tan }^2}60^\circ {\rm{cosec}}30^\circ }}{{\sec 45^\circ {{\cot }^2}30^\circ }},$ तब $x = $
यदि $\tan \theta + \sin \theta = m$ तथा $\tan \theta - \sin \theta = n,$ तो