सिद्ध कीजिए

$(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S.$ $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}$

$=\cos ^{2} x+\cos ^{2} y-2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y$

$=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)-2[\cos x \cos y+\sin x \sin y]$

$=1+1-2[\cos (x-y)]$

$[\cos (A-B)=\cos A \cos B+\sin A \sin B]$

$=2[1-\cos (x-y)]$

$=2\left[1-\left\{1-2 \sin ^{2}\left(\frac{x-y}{2}\right)\right\}\right] \quad\left[\cos 2 A=1-2 \sin ^{2} A\right]$

$=4 \sin ^{2}\left(\frac{x-y}{2}\right)= R . H.S.$

Similar Questions

यदि $\cos \theta - \sin \theta = \sqrt 2 \sin \theta ,$ तो $\cos \theta + \sin \theta $ बराबर होगा

यदि $\cos (\alpha  - \beta ) = 1$ तथा $\cos (\alpha  + \beta ) = \frac{1}{e}$, $ - \pi  < \alpha ,\beta  < \pi $, तो युग्म $(\alpha ,\beta )$ के कुल मान है

  • [IIT 2005]

$\tan \frac{19 \pi}{3}$ के मान ज्ञात कीजिए

यदि $x\sin 45^\circ {\cos ^2}60^\circ = \frac{{{{\tan }^2}60^\circ {\rm{cosec}}30^\circ }}{{\sec 45^\circ {{\cot }^2}30^\circ }},$ तब $x = $

यदि $\tan \theta + \sin \theta = m$ तथा $\tan \theta - \sin \theta = n,$ तो

  • [IIT 1970]