સાબિત કરો કે : $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$
$L.H.S.$ $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}$
$=\cos ^{2} x+\cos ^{2} y-2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y$
$=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)-2[\cos x \cos y+\sin x \sin y]$
$=1+1-2[\cos (x-y)]$
$[\cos (A-B)=\cos A \cos B+\sin A \sin B]$
$=2[1-\cos (x-y)]$
$=2\left[1-\left\{1-2 \sin ^{2}\left(\frac{x-y}{2}\right)\right\}\right] \quad\left[\cos 2 A=1-2 \sin ^{2} A\right]$
$=4 \sin ^{2}\left(\frac{x-y}{2}\right)= R . H.S.$
જો ${\sin ^2}\theta = \frac{{{x^2} + {y^2} + 1}}{{2x}}$, તો $x$ એ ફરજિયાત . . . હોવો જોઈએ.
જો $\sin \theta + \cos \theta = m$ અને $\sec \theta + {\rm{cosec}}\theta = n$, તો $n(m + 1)(m - 1) = $
$7\,cm$ ત્રિજ્યાવાળા વર્તુળાકાર વાયરને કાપી તેને $12cm$ ત્રિજયાવાળા વર્તુળ પર બેસાડવામાં આવે તો તેને કેન્દ્ર આગળ આંતરેલો ખૂણો.......$^o$ મેળવો.
જો $A + C = B,$ તો $\tan A\,\tan B\,\tan C = $
રેડિયન માપ શોધો : $520^{\circ}$