यदि दो वृत्तों के चापों की लंबाई समान हो और वे अपने केंद्र पर क्रमश: $65^{\circ}$ तथा $110^{\circ}$ का कोण बनाते हैं, तो उनकी त्रिज्याओं का अनुपात ज्ञात कीजिए।
Let $r_{1}$ and $r_{2}$ be the radii of the two circles. Given that
${{\theta _1} = {{65}^\circ } = \frac{\pi }{{180}} \times 65 = \frac{{13\pi }}{{36}}\,{\text{ radian }}}$
and ${{\theta _2} = {{110}^\circ } = \frac{\pi }{{180}} \times 110 = \frac{{22\pi }}{{36}}{\text{ }}\,{\text{radian }}}$
Let $l$ be the length of each of the arc. Then $l=r_{1} \theta_{1}=r_{2} \theta_{2},$ which gives
$\frac{13 \pi}{36} \times r_{1}=\frac{22 \pi}{36} \times r_{2}, \text { i.e., } \frac{r_{1}}{r_{2}}=\frac{22}{13}$
Hence $r_{1}: r_{2}=22: 13$
यदि $\sin x + {\rm{cosec}}\,x = 2,$ तो $sin^n x + cosec^n x$ बराबर है
उस वृत्त की त्रिज्या जिसका $15$ सेमी का चाप केन्द्र पर $3/4$ रेडियन का कोण ..... सेमी बनाता है
यदि $(\sec \alpha + \tan \alpha )(\sec \beta + \tan \beta )(\sec \gamma + \tan \gamma )$
$ = \tan \alpha \tan \beta \tan \gamma $, तब $(\sec \alpha - \tan \alpha )(\sec \beta - \tan \beta )$$(\sec \gamma - \tan \gamma ) = $
यदि $\cot x=-\frac{5}{12}$ हो और $x$ द्वितीय चतुर्थांश में स्थित हैं, तो अन्य पाँच त्रिकोणमितीय फलनों को ज्ञात कीजिए।
$\sin 765^{\circ}$ के मान ज्ञात कीजिए