Prove that: $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S.$ $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}$

$=\cos ^{2} x+\cos ^{2} y-2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y$

$=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)-2[\cos x \cos y+\sin x \sin y]$

$=1+1-2[\cos (x-y)]$

$[\cos (A-B)=\cos A \cos B+\sin A \sin B]$

$=2[1-\cos (x-y)]$

$=2\left[1-\left\{1-2 \sin ^{2}\left(\frac{x-y}{2}\right)\right\}\right] \quad\left[\cos 2 A=1-2 \sin ^{2} A\right]$

$=4 \sin ^{2}\left(\frac{x-y}{2}\right)= R . H.S.$

Similar Questions

If $\tan \theta + \sec \theta = {e^x},$ then $\cos \theta $ equals

The value of $\cos A - \sin A$ when $A = \frac{{5\pi }}{4},$ is

${\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta = $

Find the values of other five trigonometric functions if $\cot x=\frac{3}{4}, x$ lies in third quadrant.

Find the value of the trigonometric function $\sin \left(-\frac{11 \pi}{3}\right)$