$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો સવાલનો ઉકેલ મળે
Probability of solving the problem by $\mathrm{A}, \mathrm{P}(\mathrm{A})=\frac{1}{2}$
Probability of solving the problem by $\mathrm{B}, \mathrm{P}(\mathrm{B})=\frac{1}{3}$
since the problem is solved independently by $A$ and $B$,
$\therefore $ $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
$P(A^{\prime})=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$
$P(B^{\prime})=1-P(B)=1-\frac{1}{3}=\frac{2}{3}$
Probability that the problem is solved $=\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{AB})$
$=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}$
$=\frac{4}{6}$
$=\frac{2}{3}$
અહી $S=\{1,2,3, \ldots, 2022\}$ છે. તો યાર્દચ્છિક સંખ્યા $n$ ને ગણ $S$ માંથી પસંદ કરવામાં આવે તેની સંભાવના મેળવો કે જેથી $\operatorname{HCF}( n , 2022)=1$ થાય.
એક પાસાઓ એ રીતે છે કે જેથી દરેક અયુગ્મ સંખ્યા આવવાની સંભાવના એ યુગ્મ આવવાની સંભાવના કરતા બમણી છે જો ઘટના $E$ એ એકવાર ફેંકવાથી મળતી સંખ્યા $4$ કે તેનાથી વધારે આવે તેની સંભાવના $P(E)$ મેળવો.
ઘટના ${\text{A, B}}$ છે $P(A \cup B)\,\, = \,\,\frac{3}{4},\,P(A \cap B)\,\, = \,\,\frac{1}{4},\,P(A')\,\, = \,\,\frac{2}{3}$ તો ${\text{P (A' }} \cap {\text{ B)}} = ......$
એક પાસો નાંખતા, ધારો કે ઘટના $A,$ મળતી સંખ્યા $3$ કરતા વધારે હોય, ધારો કે ઘટના $B$ મળતી સંખ્યા $5$ થી નાની હોય, તો $ P(A \cup B)$ શું થાય ?
ઘટના $A$ અને $B$ ઉદ્દભવે તેની સંભાવના $0.25$ અને $0.50$ છે. બંને ઘટના સાથે ઉદ્દભવે તેની સંભાવના $0.12$ તો બન્ને ઘટના ન ઉદ્દભવે તેની સંભાવના શોધો.