$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો સવાલનો ઉકેલ મળે

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Probability of solving the problem by $\mathrm{A}, \mathrm{P}(\mathrm{A})=\frac{1}{2}$

Probability of solving the problem by $\mathrm{B}, \mathrm{P}(\mathrm{B})=\frac{1}{3}$

since the problem is solved independently by $A$ and $B$,

$\therefore $ $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$

$P(A^{\prime})=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$

$P(B^{\prime})=1-P(B)=1-\frac{1}{3}=\frac{2}{3}$

Probability that the problem is solved $=\mathrm{P}(\mathrm{A} \cup \mathrm{B})$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{AB})$

$=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}$

$=\frac{4}{6}$

$=\frac{2}{3}$

Similar Questions

$53$ રવિવાર અને $53$ સોમવાર ધરાવતા વર્ષોમાથી કોઈપણ પસંદ કરતાં, તે લીપ વર્ષ બનવાની સંભાવના કેટલી?

એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NCC$ અને $NSS$ માંથી એક પણ પસંદ કર્યા નથી. 

એક થેલામાં $4$ લાલ, $5$ સફેદ અને $6$ કાળા દડા છે. ત્રણ દડા યાર્દચ્છિક રીતે પસંદ કરવામાં આવે, તો તેઓ ભિન્ન રંગના હોવાથી સંભાવના કેટલી થાય ?

જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.

ઘટનાઓ $A$ અને $B$ એવા પ્રકારની છે કે $P(A) = 0.42, P(B) = 0.48$ અને $P(A$ અને $B) = 0.16$.$ P(A-$ નહિ) શોધો.