જો ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ અને $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ હોય, તો $P(A -$ નહિ અને $B-$ નહિ) શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that, $\mathrm{P}(\mathrm{A}) \frac{1}{4}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$

$\mathrm{P}$ $($ not on $\mathrm{A} $ and not on $\mathrm{B})$ $=\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B^{\prime}}\right)$

$\mathrm{P}$ $($ not on $\mathrm{A} $ and not on $\mathrm{B})$ $=\mathrm{P}\left((\mathrm{A}^{\prime} \cup \mathrm{B})\right)$    $\left[A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}\right]$

$=1-P(A \cup B)$

$=1-[P(A)+P(B)-P(A \cap B)]$

$=1-\frac{5}{8}$

$=\frac{3}{8}$

Similar Questions

જો વિર્ધાથી ગણિત,ભૌતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાનમાં પાસ થાય તેની સંભાવના અનુક્રમે $m, p$ અને $c$ છે.આ વિષયમાંથી,વિર્ધાથી ઓછામાં ઓછા એક વિષયમાં પાસ થાય તેની શક્યતા $75\%$ છે,ઓછામાં ઓછા બે વિષયમાં પાસ થાય તેની શક્યતા $50\%$, ફક્ત બે વિષયમાં પાસ થાય તેની શક્યતા $40\%$ છે.તો નીચેના પૈકી કયો સંબંધ સત્ય બને.

  • [IIT 1999]

જો ત્રણ પેટી માં રહેલા દડોઓ  $3$ સફેદ અને $1$ કાળો, $2$ સફેદ અને $2$ કાળો, $1$ સફેદ અને  $3$ કાળો દડો છે. જો એક દડો યાર્દચ્છિક રીતે દરેક પેટીમાંથી પસંદ કરવામાં આવે છે તો પસંદ થયેલ દડોઓ  $2$ સફેદ અને  $1$ કાળો હોય તેની સંભાવના મેળવો.

  • [IIT 1998]

એક સમતોલ પાસાને બે વખત ફેંકવામાં આવે છે. ઘટના $A$, ‘પ્રથમ પ્રયત્ન અયુગ્મ સંખ્યા મળે” અને ઘટના $B$, “બીજા પ્રયત્ન અયુગ્મ સંખ્યા મળે તેમ હોય, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે કેમ તે ચકાસો. 

$A$ અને $B$ માંથી ઓછામાં ઓછી એક ઘટના બનવાની સંભાવના $0.6$ છે. જો $A$ અને $B$ એક સાથે બનવાની સંભાવના $0.3$, હોય તો $P (A') + P (B') = ……$

જો $P (A) =0.5, P (B)=0.7, P (A \cap B) =0.6$  તો  $ P   (A \cup B) = …. ($જયાં અને આપેલી ઘટનાઓ છે.$)$