જો $A$ અને $B$ બે ઘટનાઓ છે કે જેથી $P\left( {A \cup B} \right) = P\left( {A \cap B} \right)$, તો આપેલ પૈકી કયું વિધાન અસત્ય છે .
$A$ અને $B$ એ સમાન થશે
$P\left( {A \cap B'} \right) = 0$
$P\left( {A' \cap B} \right) = 0$
$P\left( A \right) + P\left( B \right) = 1$
જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.
ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P( E-$ નહિ અથવા $F-$ નહિ) $= 0.25$, ચકાસો કે $E$ અને $F$ પરસ્પર નિવારક છે કે નહિ?
એક પ્રવેશ કસોટીને બે પરીક્ષાના આધાર પર શ્રેણીબદ્ધ કરવામાં આવે છે. યાદચ્છિક રીતે પસંદ કરેલા વિદ્યાર્થીની પહેલી પરીક્ષામાં પાસ થવાની સંભાવના $0.8$ છે અને બીજી પરીક્ષામાં પાસ થવાની સંભાવના $0.7$ છે. બંનેમાંથી ઓછામાં ઓછી એક પરીક્ષામાં પાસ થવાની સંભાવના $0.95$ છે. બંને પરીક્ષામાં પાસ થવાની સંભાવના શું છે?
એક થેલામાં $9$ તકતી છે. તે પૈકી $4$ લાલ રંગની, $3$ ભૂરા રંગની અને $2$ પીળા રંગની છે. પ્રત્યેક તકતી આકા૨ અને માપમાં સમરૂપ છે. થેલામાંથી એક તકતી યાદચ્છિક રીતે કાઢવામાં આવે છે. જો તે ,લાલ રંગની અથવા ભૂરા રંગની હોય તે અનુસાર કાઢવામાં આવેલ તકતીની સંભાવના શોધો.
એક ઘટના $A$ પોતાનાથી સ્વતંત્ર હોય કે જ્યારે $P (A) = ……$