एक विशेष समस्या को $A$ और $B$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमश : $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि
समस्या हल हो जाती है।
Probability of solving the problem by $\mathrm{A}, \mathrm{P}(\mathrm{A})=\frac{1}{2}$
Probability of solving the problem by $\mathrm{B}, \mathrm{P}(\mathrm{B})=\frac{1}{3}$
since the problem is solved independently by $A$ and $B$,
$\therefore $ $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
$P(A^{\prime})=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$
$P(B^{\prime})=1-P(B)=1-\frac{1}{3}=\frac{2}{3}$
Probability that the problem is solved $=\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{AB})$
$=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}$
$=\frac{4}{6}$
$=\frac{2}{3}$
$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ परस्पर अपवर्जी हैं।
यदि $A, B, C$ कोई तीन घटनायें हैं। यदि $P (S), S$ के घटाने की प्रायिकता है, तो $P\,(A \cap (B \cup C)) = $
दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि
दोनों में से केवल एक परीक्षा में उत्तीर्ण होगा।
दो घटनाओं $A$ तथा $B$ में से कम से कम एक के घटित होने की प्रायिकता $0.6$ है। यदि घटनाओं $A$ तथा $B$ के साथ-साथ घटित होने की प्रायिकता $0.2$ हो, तो $P\,(\bar A) + P\,(\bar B) = $
किसी घटना के अनुकूल संयोगानुपात $4 : 5$ हैं, तो उस घटना के घटित होने की प्रायिकता है