જો $2 + 3i$ એ સમીકરણ $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ નો એક ઉકેલ હોય તો આ સમીકરણના વાસ્તવિક ઉકેલ મેળવો.
$-\frac {1}{2}$
$\frac {1}{2}$
$1.$
વાસ્તવિક ઉકેલ શકય નથી
સમીકરણ $x^{4}-3 x^{3}-2 x^{2}+3 x+1=10$ નાં તમામ બીજ ના ધનોંનો સરવાળો $\dots\dots\dots$ છે.
સમીકરણ $|x||x+2|-5|x+1|-1=0$ નાં ભિન્ન વાસ્તવિક બીજ ની સંખ્યા ............ છે.
જો $\alpha$ અને $\beta$ એ સમીકરણ $x^3 + 3x^2 -1 = 0$ ના બે ભિન્ન બીજો હોય તો ક્યાં સમીકરણનો ઉકેલ $(\alpha \beta )$ થાય ?
જો $[x]$ એ મહત્તમ પૂર્ણાક વિધેય દર્શાવે છે, તો સમીકરણ $x^2-4 x+[x]+3=x[x]$ ને :
જો $\alpha $ અને $\beta $ દ્રીઘાત સમીકરણ $x^2 + x\, sin\,\theta -2sin\,\theta = 0$, $\theta \in \left( {0,\frac{\pi }{2}} \right)$ ના ઉકેલો હોય તો $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha - \beta } \right)}^{24}}}}$ ની કિમત મેળવો.