lf $2 + 3i$ is one of the roots of the equation $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ then the real root of this equation
exists and is equal to $-\frac {1}{2}$
exists and is equal to $\frac {1}{2}$
exists and is equal to $1.$
does not exist.
If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:
If the equation $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ has $k$ real roots, then $k$ is equal to -
Let $\mathrm{S}$ be the set of positive integral values of $a$ for which $\frac{\mathrm{ax}^2+2(\mathrm{a}+1) \mathrm{x}+9 \mathrm{a}+4}{\mathrm{x}^2-8 \mathrm{x}+32}<0, \forall \mathrm{x} \in \mathbb{R}$. Then, the number of elements in $\mathrm{S}$ is :
One root of the following given equation $2{x^5} - 14{x^4} + 31{x^3} - 64{x^2} + 19x + 130 = 0$ is
The number of integers $n$ for which $3 x^3-25 x+n=0$ has three real roots is